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Abstract—This work presents a Python-based simulation
framework and web application for visualizing quantum trans-
port phenomena in nanoscale systems, focusing on one- and
two-dimensional tight-binding models. We explore how disorder
and external magnetic fields affect electron transport using the
Landauer-Büttiker formalism, with calculations performed via
the Kwant software package. The platform allows real-time
parameter tuning and conductance visualization, enabling users
to study Anderson localization in 1D chains and quantized
conductance plateaus in 2D systems under magnetic fields. Our
results demonstrate the suppression of transport due to disor-
der and the emergence of Landau level–induced quantization,
providing a pedagogical and exploratory tool for students and
researchers interested in quantum materials and mesoscopic
physics.

Index Terms—quantum transport, tight-binding model, Ander-
son localization, quantum Hall effect, simulation, Kwant

I. INTRODUCTION

Quantum transport in mesoscopic systems is a central
topic in condensed matter physics, particularly as devices
shrink to nanoscale dimensions where classical descriptions
of conduction break down. In this regime, quantum coherence,
wave interference, and discrete energy levels dominate electron
behavior, requiring the use of quantum mechanical models
such as the tight-binding approximation and scattering theory.

Accurate modeling of these systems is crucial not only for
fundamental research, but also for designing novel materials
and quantum devices. However, many computational tools for
quantum transport—while powerful—are often inaccessible to
newcomers due to steep learning curves or lack of interactive
visualization.

This paper introduces a simulation framework and accom-
panying web application aimed at making quantum transport
phenomena more accessible to learners and researchers. Built
using Python and Kwant, and delivered through a FastAPI
backend with a React frontend, the tool allows users to
visualize how disorder and magnetic fields affect conductance
in one- and two-dimensional tight-binding models. By simu-
lating conductance in real time using the Landauer-Büttiker
formalism and presenting the results through an interactive
interface, our framework serves both as a research tool and
a pedagogical aid. We focus particularly on phenomena such
as Anderson localization and the integer quantum Hall effect,

both of which offer rich insights into the interplay between
symmetry, topology, and disorder.

The modular design of our platform enables future exten-
sions to more complex systems, including multi-terminal ge-
ometries, spinful tight-binding models, and topological phases
beyond the quantum Hall regime. In particular, it can be
adapted to simulate superconducting systems by incorporating
particle-hole symmetry through the Bogoliubov–de Gennes
formalism, paving the way for studies of Majorana modes and
proximity-induced superconductivity.

II. METHODS

A. Theoretical Framework

At the core of our model is the tight-binding approximation,
a widely used method for describing quantum particles (typ-
ically electrons) in a lattice. In this framework, electrons are
assumed to be strongly localized around atomic sites, and their
dynamics arise from quantum tunneling (hopping) between
neighboring sites. The tight-binding Hamiltonian captures both
the on-site potential energy and inter-site hopping terms.

The dynamics of the quantum system are governed by the
time-dependent Schrödinger equation:

iℏ
∂

∂t
Ψ(t) = HΨ(t), (1)

where Ψ(t) is the time-dependent quantum state and H is the
Hamiltonian operator encoding the system’s total energy. In
tight-binding systems, Ψ(t) is typically expanded in a discrete
basis of localized orbitals associated with each lattice site.

Assuming a system of non-interacting spinless fermions, the
Hamiltonian can also be expressed in second quantization,
where the basic objects are not wavefunctions (as in first
quantization), but operators that create and annihilate particles
at given lattice sites. In one dimension, the tight-binding
Hamiltonian takes the form:

H =
∑
i

εic
†
i ci −

∑
⟨i,j⟩

tijc
†
i cj + h.c. (2)

where:
• εi is the on-site energy at site i,
• c†i and ci are the fermionic creation and annihilation

operators at site i,
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• tij is the hopping amplitude between neighboring sites i
and j,

• “h.c.” denotes the Hermitian conjugate to ensure a Her-
mitian Hamiltonian.

These operators obey the canonical fermionic anticommu-
tation relations:

{ci, c†j} = δij , {ci, cj} = 0 = {c†i , c
†
j}. (3)

The number operator n̂i = c†i ci measures the occupancy at site
i. The hopping term c†i cj describes an electron moving from
site j to site i, while the on-site term reflects local potential
energy.

The tight-binding model is particularly powerful for explor-
ing phenomena such as Anderson localization and quantum
interference. In such systems, spatial variation of εi introduces
disorder, while magnetic fields can be included via complex
Peierls phases on the hopping terms (discussed in Section II-
F).

Throughout this work, we compute transport properties
using the scattering matrix formalism, where energy-resolved
transmission coefficients are obtained from the system’s S-
matrix and inserted into the Landauer formula to calculate
conductance. These calculations are implemented using the
Kwant software package.

In numerical simulations, the abstract operator Hamiltonian
is represented as a finite matrix acting on a discrete Hilbert
space. For a tight-binding chain with N sites, this leads to a
sparse matrix whose structure encodes the system’s connectiv-
ity and boundary conditions. Below is the Hamiltonian matrix
for a simple case with three sites and uniform parameters:

H =

 ε −t 0
−t ε −t
0 −t ε

 (4)

This tridiagonal structure is characteristic of 1D chains with
nearest-neighbor hopping.

B. Comparison: 1D vs 2D Hamiltonians

Building on the general Hamiltonian structure introduced
in the previous section, we now compare how dimensional-
ity—specifically 1D versus 2D lattice geometry—affects the
physical behavior of quantum systems.

The tight-binding model naturally generalizes from one-
dimensional (1D) chains to two-dimensional (2D) lattices,
allowing for the exploration of richer physical phenomena.

In the 1D case, electrons can only hop to adjacent sites
along a linear chain. The tight-binding Hamiltonian contains
on-site potential terms and hopping terms between nearest
neighbors to the left and right. As described earlier, this yields
a tridiagonal matrix structure. The limited connectivity in 1D
makes these systems especially sensitive to disorder: even
infinitesimally weak disorder leads to Anderson localization,
where wavefunctions become exponentially localized and con-
ductance decays rapidly with system size.

In contrast, the 2D tight-binding model extends this concept
to a square lattice, where each site can connect to neighbors
in both the x and y directions. The Hamiltonian becomes:

H =
∑
i,j

εi,j c
†
i,jci,j −

∑
⟨(i,j),(i′,j′)⟩

t(i,j)(i′,j′) c
†
i,jci′,j′ + h.c.

(5)
Here, (i, j) indexes the lattice sites in two dimensions. The
increased connectivity allows for more complex dynamics,
including interference patterns, closed-loop trajectories, and
orbital motion.

To model the effect of a magnetic field B⃗ in a lattice system,
we apply the Peierls substitution to the hopping terms. Each
hopping amplitude acquires a complex phase determined by
the magnetic vector potential A⃗:

tij → tij exp

(
2πi

Φ0

∫ r⃗j

r⃗i

A⃗ · d⃗l

)
, (6)

where Φ0 = h/e is the magnetic flux quantum, and the line
integral is taken along the path from site i to site j. This phase
ensures gauge-invariant coupling of electrons to the external
magnetic field in the lattice model.

After applying the Peierls substitution, the tight-binding
Hamiltonian in 2D becomes:

H =
∑
i,j

εi,j c
†
i,jci,j −

∑
⟨(i,j),(i′,j′)⟩

t eiϕ(i,j)(i′,j′) c†i,jci′,j′ + h.c.

(7)
Here, ϕ(i,j)(i′,j′) is the Peierls phase associated with hopping
from site (i, j) to (i′, j′), and encodes the influence of the mag-
netic field through the vector potential. This phase modifies the
interference properties of electron wavefunctions across the
lattice, leading to new quantum phenomena such as Landau
level quantization and edge state formation.

This phase accumulation depends on the vector potential
and causes the system to lose time-reversal symmetry—that is,
the system no longer behaves identically when the direction of
time is reversed. As a result, electrons experience a Lorentz-
like force that bends their trajectories into circular orbits,
analogous to classical cyclotron motion.

When the system is large enough, this circular motion
becomes quantized, leading to discrete energy levels known
as Landau levels. These are a direct quantum manifestation
of cyclotron orbits and represent the allowed energies of an
electron in a magnetic field.

In a finite 2D lattice with open boundaries, these Landau
levels are not the whole story. At the edges of the system,
special conducting states—called chiral edge states—appear.
These edge states propagate in a single direction (i.e., they are
chiral), and are spatially localized near the system’s boundary.
Unlike bulk states, they do not reflect or scatter backward,
even in the presence of weak disorder or impurities.

This remarkable robustness arises from the system’s un-
derlying topological structure. Specifically, the bulk energy
bands acquire a nontrivial topology, which is mathematically
characterized by an integer known as the Chern number. As
long as the energy lies within a bulk gap (between Landau



levels), the number of conducting edge modes equals the
Chern number. These edge states are said to be topologi-
cally protected, meaning they cannot be removed or localized
without a fundamental change in the system’s global band
structure—such as closing the energy gap.

To illustrate the matrix structure in 2D, consider a 2 × 2
lattice with open boundary conditions and uniform parameters.
The Hamiltonian matrix is:

H =


ε −t −t 0
−t ε 0 −t
−t 0 ε −t
0 −t −t ε

 (8)

This form reflects the increased connectivity: each site may be
coupled to up to four neighbors (left, right, up, down), leading
to a sparsely filled but more complex matrix structure.

To explore these phenomena numerically, we construct finite
tight-binding lattices with leads, simulating electron injection
and transmission using the formalism described above. This
setup is detailed in the following section.

C. Physical Apparatus Simulated
We model a quantum transport setup composed of three

regions: the left lead (electron source), the central scattering
region, and the right lead (electron drain). Electrons are
injected from the left lead, propagate through the central
disordered or magnetically perturbed region, and exit through
the right lead. The full structure behaves as:

[Left Lead] – [Scattering Region] – [Right Lead]

The left and right leads act as ideal electron reservoirs that
maintain a constant chemical potential and inject electrons
into the system. The scattering region is finite in size and
hosts the disorder and magnetic field perturbations we wish to
study. Conductance is calculated by tracking how much of an
incoming wave from the left lead is transmitted to the right
lead.

D. Lead and Boundary Handling in Kwant
Kwant handles leads by requiring them to be translationally

invariant and infinite in extent. The user defines a unit cell
and symmetry direction, and Kwant replicates the unit cell to
model an ideal semi-infinite lead. These leads are connected
to a finite central region (the scattering region), forming a
complete system. Internally, Kwant uses recursive Green’s
function or wavefunction matching techniques to solve for the
system’s scattering matrix. Boundary conditions are carefully
enforced at lead-scatter junctions to ensure continuity and
current conservation.

E. Anderson Localization
In disordered systems, random on-site potentials cause de-

structive interference of wavefunctions, leading to localization:

|ψ(x)| ∼ e−x/ξ (9)

where ξ is the localization length. Even weak disorder in 1D
systems causes exponential localization, leading to suppressed
conductance.

F. Magnetic Field and Quantum Hall Effect

To model a perpendicular magnetic field in a 2D TBM, we
apply the Peierls substitution:

tij → tije
iϕij , ϕij =

2π

Φ0

∫ j

i

A⃗ · d⃗l (10)

In Landau gauge A⃗ = (0, Bx, 0), the phase becomes ϕ =
2πBx. The result is quantized Landau levels:

En = ℏωc(n+
1

2
), ωc =

eB

m
(11)

These give rise to conductance plateaus observed in the
quantum Hall effect.

G. Quantum Transport Formalism

Transport is described by the Landauer formula:

G(E) =
e2

h
T (E) (12)

where T (E) is the energy-dependent transmission. Kwant
computes T (E) from the scattering matrix S:

T (E) = Tr(S†
RLSRL) (13)

H. Software Design

The core of our application is implemented in Python
and powered by Kwant. A FastAPI backend defines the API
interface, where clients can submit parameters (system length,
width, disorder strength, magnetic field). The backend uses
these inputs to construct a Kwant system, attach leads, and
finalize the lattice. It then sweeps through energy values,
calculating transmission probabilities using Kwant’s scattering
matrix tools. The resulting conductance vs energy data is
plotted using Matplotlib and returned to the frontend as
a base64-encoded image. A React.js frontend, styled with
Tailwind CSS, receives this image and renders it alongside
interactive sliders for user input. Each time the user updates a
parameter and submits a new simulation, the frontend sends a
POST request to the backend and updates the plot accordingly.
This architecture enables fast feedback and exploration of
transport phenomena.

III. RESULTS

Our first simulations focus on 1D chains with increasing
disorder. We observe rapid decay of conductance as disorder
increases. In 2D systems with a magnetic field, we observe the
emergence of plateaus in conductance due to Landau levels.
When disorder is added to this system, conductance degrades,
and the quantum Hall effect is eventually suppressed.

IV. DISCUSSION

These results validate theoretical expectations: disorder
induces localization while magnetic fields create quantized
energy levels. Competing effects can be visualized, such as
localization competing against topologically protected trans-
port.



V. CONCLUSION

We developed a Python-based quantum transport simulation
tool with a frontend for interactive exploration. It demonstrates
localization, quantum Hall effects, and their interplay in dis-
ordered lattices. The tool can be extended for use in research
and teaching.
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Fig. 1. 1D tight-binding chain with nearest-neighbor hopping amplitude t
between lattice sites.

Fig. 2. 2D tight-binding lattice with nearest-neighbor hopping in both x and
y directions.

Fig. 3. User interface for adjusting lattice parameters and visualizing
conductance.

Fig. 4. Sample simulation output: conductance vs energy with disorder
strength 0 in the QHE regime.
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