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Abstract—This research paper aims to examine one-
dimensional and two-dimensional Tight Binding Models, and the
effects of disorder and magnetic field disruptions on these sys-
tems. We propose a software simulation to examine these effects
and present a fully functional web application to allow for open
inquiry. We intend for this paper to be a beginner’s introduction
into nanomaterials and quantum physics-related applications in
quantum transport. We detail the related Hamiltonians and
mathematical equations related to the Quantum Hall Effect and
Anderson Localization with rigor.

Index Terms—quantum transport, tight-binding model, Ander-
son localization, quantum Hall effect, simulation, Kwant

I. INTRODUCTION

Quantum transport in mesoscopic systems presents a fertile
ground for both theoretical exploration and applied nanoengi-
neering. Classical models of conduction fail at nanoscales,
necessitating quantum mechanical treatments. This paper de-
velops a tight-binding-based simulation tool and web interface
for exploring the effects of disorder and magnetic fields on
quantum transport in 1D and 2D lattices.

II. METHODS

A. Theoretical Framework
The Hamiltonian is the operator that represents the total

energy (kinetic + potential) of a quantum system. It allows us
to solve the Schrödinger equation:

iℏ
∂

∂t
Ψ(t) = HΨ(t) (1)

which governs the time evolution of the wavefunction Ψ(t).
The tight-binding model (TBM) approximates electron be-

havior in solids by assuming electrons are localized on lattice
sites and hop between neighboring sites. In 1D, the Hamilto-
nian is:

H =
∑
i

εic
†
i ci −

∑
⟨i,j⟩

tijc
†
i cj + h.c. (2)

Here, εi is the on-site potential, c†i and ci are fermionic
creation and annihilation operators, and tij is the hopping
amplitude.

These operators obey fermionic anticommutation relations:

{ci, c†j} = δij , {ci, cj} = 0 = {c†i , c
†
j} (3)

The number operator ni = c†i ci measures the occupancy at
site i. The hopping term allows electron motion across sites.

B. Comparison: 1D vs 2D Hamiltonians

In the 1D tight-binding model, electrons are confined to
hopping along a linear chain. The hopping terms only connect
each site to its nearest neighbor on the left and right. The
Hamiltonian contains on-site energy terms and hopping terms
between adjacent sites. The 1D system is especially sensitive
to disorder: any non-zero disorder strength leads to Anderson
localization.

In contrast, the 2D tight-binding model expands this concept
to a square lattice. Each site is now connected to its neighbors
in both the x and y directions. The Hamiltonian becomes:

H =
∑
i,j

εi,jc
†
i,jci,j−

∑
⟨(i,j),(i′,j′)⟩

t(i,j)(i′,j′)c
†
i,jci′,j′+h.c. (4)

This richer connectivity allows for the manifestation of new
phenomena, such as cyclotron orbits and Landau level quan-
tization in the presence of a magnetic field. It also means that
disorder has a more complex impact, as localization can occur
differently along the two axes. Additionally, the 2D model
allows for breaking time-reversal symmetry via magnetic flux,
enabling quantum Hall physics.

C. Physical Apparatus Simulated

We model a quantum transport setup composed of three
regions: the left lead (electron source), the central scattering
region, and the right lead (electron drain). Electrons are
injected from the left lead, propagate through the central
disordered or magnetically perturbed region, and exit through
the right lead. The full structure behaves as:

[Left Lead] – [Scattering Region] – [Right Lead]

The left and right leads act as ideal electron reservoirs that
maintain a constant chemical potential and inject electrons
into the system. The scattering region is finite in size and
hosts the disorder and magnetic field perturbations we wish to
study. Conductance is calculated by tracking how much of an
incoming wave from the left lead is transmitted to the right
lead.

D. Lead and Boundary Handling in Kwant

Kwant handles leads by requiring them to be translationally
invariant and infinite in extent. The user defines a unit cell
and symmetry direction, and Kwant replicates the unit cell to
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model an ideal semi-infinite lead. These leads are connected
to a finite central region (the scattering region), forming a
complete system. Internally, Kwant uses recursive Green’s
function or wavefunction matching techniques to solve for the
system’s scattering matrix. Boundary conditions are carefully
enforced at lead-scatter junctions to ensure continuity and
current conservation.

E. Anderson Localization

In disordered systems, random on-site potentials cause de-
structive interference of wavefunctions, leading to localization:

|ψ(x)| ∼ e−x/ξ (5)

where ξ is the localization length. Even weak disorder in 1D
systems causes exponential localization, leading to suppressed
conductance.

F. Magnetic Field and Quantum Hall Effect

To model a perpendicular magnetic field in a 2D TBM, we
apply the Peierls substitution:

tij → tije
iϕij , ϕij =

2π

Φ0

∫ j

i

A⃗ · d⃗l (6)

In Landau gauge A⃗ = (0, Bx, 0), the phase becomes ϕ =
2πBx. The result is quantized Landau levels:

En = ℏωc(n+
1

2
), ωc =

eB

m
(7)

These give rise to conductance plateaus observed in the
quantum Hall effect.

G. Quantum Transport Formalism

Transport is described by the Landauer formula:

G(E) =
e2

h
T (E) (8)

where T (E) is the energy-dependent transmission. Kwant
computes T (E) from the scattering matrix S:

T (E) = Tr(S†
RLSRL) (9)

H. Software Design

The core of our application is implemented in Python
and powered by Kwant. A FastAPI backend defines the API
interface, where clients can submit parameters (system length,
width, disorder strength, magnetic field). The backend uses
these inputs to construct a Kwant system, attach leads, and
finalize the lattice. It then sweeps through energy values,
calculating transmission probabilities using Kwant’s scattering
matrix tools. The resulting conductance vs energy data is
plotted using Matplotlib and returned to the frontend as
a base64-encoded image. A React.js frontend, styled with
Tailwind CSS, receives this image and renders it alongside
interactive sliders for user input. Each time the user updates a
parameter and submits a new simulation, the frontend sends a
POST request to the backend and updates the plot accordingly.
This architecture enables fast feedback and exploration of
transport phenomena.

Fig. 1. User interface for adjusting lattice parameters and visualizing
conductance.

Fig. 2. Sample simulation output: conductance vs energy with disorder
strength 0 in the QHE regime.

III. RESULTS

Our first simulations focus on 1D chains with increasing
disorder. We observe rapid decay of conductance as disorder
increases. In 2D systems with a magnetic field, we observe the
emergence of plateaus in conductance due to Landau levels.
When disorder is added to this system, conductance degrades,
and the quantum Hall effect is eventually suppressed.

IV. DISCUSSION

These results validate theoretical expectations: disorder
induces localization while magnetic fields create quantized
energy levels. Competing effects can be visualized, such as
localization competing against topologically protected trans-
port.

V. CONCLUSION

We developed a Python-based quantum transport simulation
tool with a frontend for interactive exploration. It demonstrates
localization, quantum Hall effects, and their interplay in dis-
ordered lattices. The tool can be extended for use in research
and teaching.
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